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1. Introduction

To generalize the chromatic polynomial of a graph, Tutte [17] introduced the dichro-
matic polynomial in two dual variables which we know as the Tutte polynomial. It
has been extended to general matroids, see Crapo [6]. Many interesting invariants
of graphs and matroids can be computed directly from these polynomials. For a
wealth of information on the properties and applications of Tutte polynomials, see
Brylawski and Oxley [3]. It is worth mentioning that the Tutte polynomials play an
important role in statistical mechanics, where the partition functions are just simple
variants of these polynomials; the Jones polynomials and the Kauffman polynomi-
als in knot theory are also closely related to them. We refer the reader to Bollobás
[2] and references therein for more details of these connections.

This paper is exclusively concerned with the Tutte polynomials of graphs, and
the graphs considered here are assumed to be always connected. Given a connected
graph G, the Tutte polynomial TG(x, y) of G is originally defined as

TG(x, y) =
∑

i, j

ti j x i y j , (1)
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where ti j is the number of (i, j)-trees, each of which is a spanning tree of G and
has precisely i internally active edges and precisely j externally active edges, see
[17]. Hence, TG(1, 0) equals the number of spanning trees without externally active
edges, TG(0, 1) equals the number of spanning trees without internally active edges,
and TG(1, 1) equals the number of all spanning trees.

Much work has been done on enumerations of special orientations of graphs
by evaluating the Tutte polynomials. A well-known result of Stanley [15] states that
the number of acyclic orientations of G is equal to TG(2, 0). Note that a general
result was already given by Winder [18] in order to count the number of regions of
a hyperplane arrangement. Greene and Zaslavsky [11] proved that the number of
acyclic orientations with a unique source at a given vertex is the special value of the
Tutte polynomial at (1, 0). It was also known that TG(0, 2) enumerates the number
of totally cyclic orientations of G, see [2, p.372], and TG(2, 1) counts the indegree
sequences of orientations of G, see Stanley [16].

Recently, Gioan [9] introduced some equivalence classes of orientations defined
by reversing directed cycles, directed cocycles, or both. With a different formula-
tion, the cycle reversing classes are used by Chen and Stanley [5] to study the flow
polynomials, where they are called Eulerian-equivalence classes. On the other hand,
the cocycle reversing classes are used by Chen [4] to study the tension polynomials,
where they are called cut-equivalence classes. In the next section we will show the
equivalence between the two characterizations of cycle reversing classes, as well as
the equivalence between the two characterizations of cocycle reversing classes. Note
that Kochol has already considered the Eulerian-equivalence relation for totally
cyclic orientations in [13] and the cut-equivalence relation for acyclic orientations
in [12].

It was shown by Gioan [9] that the number of cocycle reversing classes of acyclic
orientations is equal to TG(1, 0), see also [4], and the number of cycle reversing
classes of totally cyclic orientations is equal to TG(0, 1), see also [5]. Using the con-
volution formula of the Tutte polynomials, which was bijectively proved by Etienne
and Las Vergnas [7] and was explicitly stated by Kook, Reiner and Stanton [14],
Gioan proved that the value TG(2, 1) enumerates the number of cycle reversing clas-
ses of orientations, TG(1, 2) enumerates the number of cocycle reversing classes of
orientations, and TG(1, 1) enumerates the number of cycle-cocycle reversing classes
of orientations.

The main objective of this paper is to give a bijective proof of the result that
TG(0, 1) counts the Eulerian-equivalence classes of totally cyclic orientations of
G based on the reformulation of the equivalence relation as described in [5,13].
For the bijective proof, we will define a bijection between spanning trees without
internally active edges and Eulerian-equivalence classes of totally cyclic orienta-
tions. We introduce the notion of reduced orientations, which can be taken as the
representative elements of Eulerian-equivalence classes. Our bijection is actually a
bijective map from the set of reduced orientations of totally cyclic orientations to
the set of spanning trees without internally active edges, which is dual to the bijec-
tion of Gebhard and Sagan [8] between the set of acyclic orientations with a unique
sink at a given vertex and the set of spanning trees without externally active edges.
Since there exists one and only one acyclic orientation with the unique given sink



A Bijection for Eulerian-equivalence Classes 521

in every cocycle reversing classes of acyclic orientations, we see that the bijection of
Gebhard and Sagan leads to a bijection between cocycle reversing classes of acyclic
orientations and spanning trees without externally active edges.

Gioan and Las Vergnas [10] also gave a bijection between the set of acyclic ori-
entations with a unique sink at a given vertex and the set of spanning trees without
externally active edges, and this bijection was produced from their general activity-
preserving correspondence between spanning trees and orientations with respect
to certain order of the edge set. Notably, Gioan and Las Vergnas [10] established
a bijection between spanning trees with external activity zero and activity classes
of acyclic orientations, and dually a bijection between spanning trees with internal
activity zero and activity classes of totally cyclic orientations. Note that both the
present bijection in this paper and the bijection of Gebhard and Sagan are the vari-
ants of an algorithmic bijection of Blass and Sagan in [1]. We should point out that
these bijections are not activity-preserving, different from the bijections of Gioan
and Las Vergnas in [10].

2. Notation and Terminology

Much of the notation will follow that of [2]. Let G = (V, E) be a connected graph
with vertex set V and edge set E , in which multiple edges and loops are allowed. We
say that G ′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E . By a cycle
of G we mean a 2-regular connected subgraph in G. By a cut of G we mean a set of
edges between S and T for some partition V = S ∪ T of the vertex set, denoted by
[S, T ]. An edge subset of G is called a cocycle if it can be written as a cut. A minimal
cut is called a bond. A connected graph is called a tree if it contains no cycles. A tree
F = (V ′, E ′) is called a spanning tree of G if V ′ = V and E ′ ⊂ E .

Let us now review the definitions of internal activity and external activity of span-
ning trees. Suppose that the edge set E(G) = {e1, e2, . . . , em} is linearly ordered,
where ei < e j for i < j . Fix a spanning tree F of G. For each edge ei in F ,
we call UF (ei ) = {e j ∈ E(G) : (F − ei ) + e j is a spanning tree} the cut defined
by ei . If ei is the smallest edge of the cut it defines, we call ei an internally active
edge of F . Similarly, for each edge e j not in F , we call Z F (e j ) = {ei ∈ E(G) :
ei is an edge on the unique cycle of F +e j } the cycle defined by e j . If e j is the small-
est edge of the cycle it defines, we call e j an externally active edge. We say that a
spanning tree has internal activity i and external activity j if there are precisely i
internally active edges and precisely j externally active edges, denoted by an (i, j)-
tree.

Given e ∈ E , let G − e = (V, E\{e}). Thus G − e is obtained from G by deleting
the edge e. Let G/e be the multigraph obtained from G by contracting the edge
e. It is well known that the Tutte polynomials defined by (1) satisfy the following
recurrence relation

TG(x, y) =
⎧
⎨

⎩

xTG/e(x, y), if e is a bridge,
yTG−e(x, y), if e is a loop,
TG−e(x, y) + TG/e(x, y), if e is neither a bridge nor a loop,

where TG(x, y) = 1 if G is a graph consisting of isolated vertices.
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Note that, for a given graph G = (V, E), each edge e ∈ E(G) is incident with
two vertices u, v ∈ V (G), and it can be assigned a direction either from u to v or
from v to u, but not both. In particular, a loop has two directions from a vertex to
itself. If the edge e is directed from u to v, then it is denoted by −→uv. An orientation
ε of G gives each edge a direction, and the digraph obtained in this way is denoted
by (G, ε). Let O(G) denote the set of all orientations of G. A partial orientation of
G is a subset of edges of an orientation of G.

Given a digraph (G, ε), a directed cycle is a cycle in which all edges have a con-
sistent direction with respect to ε. Let AO(G) denote the set of all orientations
without directed cycles, namely, the set of acyclic orientations. Given a cut [S, T ]
of G, we denote by (S, T )ε the set of all edges going from S to T relative to ε, and
by (T, S)ε the set of all edges going from T to S. A bond [S, T ] is called directed
relative to ε if (S, T )ε = ∅ or (T, S)ε = ∅. In Fig. 1, both [{v1}, {v2}] and [{v3}, {v2}]
are directed bonds of (G, ε). A cut is called directed if it can be decomposed into a
disjoint union of directed bonds. A directed cocycle is a set of edges forming a cut
[S, T ] such that (T, S)ε = ∅ or (S, T )ε = ∅. Note that a directed cut need not to be a
directed cocycle. For example, as shown in Fig. 1, in the digraph (G, ε) the directed
cut [{v1, v3}, {v2}] is not a directed cocycle, but in the digraph (G ′, ε′) the directed
cut [{v′

1, v
′
3}, {v′

2}] is a directed cocycle. Let BO(G) denote the set of all orientations
without directed cuts, namely, the set of totally cyclic orientations.

We also need the concept of cycle flippable edges. Fix an orientation ε of G and
an edge e = (u, v). If there exists a directed cycle containing both u and v in the
digraph obtained from (G, ε) by deleting the edge e, then we call e a cycle flippable
edge relative to ε.

Given an orientation ε ∈ O(G) and a vertex v ∈ V (G), let E+(v, ε) be the set of
edges taking v as the head and E−(v, ε) the set of edges taking v as the tail. Then
the indegree of v is defined as the cardinality of E−(v, ε), and the outdegree of v is
defined as the cardinality of E+(v, ε). Now let us recall two different characteriza-
tions of cycle reversing classes of orientations. Gioan [9] defined two orientations
ε1 and ε2 to be equivalent if ε1 can be obtained from ε2 by reversing some cycle C
in the digraph (G, ε1) and vice versa. The transitive closure of this relation defines
cycle reversing classes of orientations. The notion of Eulerian-equivalence classes
was considered in [5,13], where two orientations ε1 and ε2 are defined to be Euleri-
an-equivalent, denoted by ε1 ∼e ε2, if the spanning subgraph induced by the edge
set {e ∈ E(G) | ε1(e) 	= ε2(e)} is an oriented Eulerian graph with respect to ε1 or
ε2, i.e., the indegree is equal to the outdegree at each vertex in the subgraph, see

Fig. 1. Two digraphs.
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Lemma 1 below. In fact, the notion of cycle reversing classes coincides with that of
Eulerian-equivalence classes. We need the following variant of Euler’s theorem.

Lemma 1. [2, p.16] A digraph is Eulerian if and only if each vertex has the same
outdegree and indegree.

Proposition 1. (1) The Eulerian-equivalence relation∼e is indeed an equivalence rela-
tion on O(G), and it also induces an equivalence relation on BO(G).

(2) Two orientations ε1 and ε2 belong to the same cycle reversing class if and only if
ε1 ∼e ε2.

Proof. (1) It is obvious that the relation ∼e is reflexive and symmetric. Suppose
that ε1 ∼e ε2 and ε2 ∼e ε3. Then we proceed to prove that ε1 ∼e ε3. Since revers-
ing a directed cycle in a digraph doesn’t change the indegree sequence, we have
|E−(v, ε1)| = |E−(v, ε2)| and |E−(v, ε2)| = |E−(v, ε3)| for each v ∈ V (G), and
hence |E−(v, ε1)| = |E−(v, ε3)|. Let

E1 = {e ∈ E−(v, ε1) | ε1(e) 	= ε3(e)},
E2 = {e ∈ E−(v, ε1) | ε1(e) = ε3(e)},
E3 = {e ∈ E+(v, ε1) | ε1(e) 	= ε3(e)}.

Note that

E−(v, ε1) = E1 
 E2, E−(v, ε3) = E2 
 E3.

Thus, we have |E1| = |E3|, and from Lemma 1 it follows that the spanning subgraph
induced by the edge set {e ∈ E(G) | ε1(e) 	= ε3(e)} is an oriented Eulerian graph
with respect to ε1 or ε3. This completes the proof of the desired transitivity of the
relation ∼e. Moreover, it is clear that if ε1 ∼e ε2 and ε1 ∈ BO(G), then ε2 is also
totally cyclic. Therefore, the relation ∼e is also an equivalence relation on BO(G).

(2) If ε1 ∼e ε2, then by definition the spanning subgraph induced by the edge
set {e ∈ E(G) | ε1(e) 	= ε2(e)} is an oriented Eulerian graph with respect to ε1,
which can be written as a disjoint union of directed cycles C1, C2, . . . , Cr . There-
fore, ε2 can be obtained from ε1 by sequentially reversing C1, C2, . . . , Cr . To prove
the “only if” part, by transitivity of the Eulerian-equivalence relation, it suffices to
show that ε1 ∼e ε2 if ε2 is obtained from ε1 by reversing exactly one directed cycle
(as is obvious from the definition of the Eulerian-equivalence relation). �

Similarly to the definition of cycle reversing classes, Gioan [9] introduced the
concept of cocycle reversing classes of orientations by reversing cocycles. In the same
manner, we can show that the notion of cocycle reversing classes of orientations coin-
cides with that of cut-equivalence classes of orientations considered in [4,12]. Recall
that two orientations ε1 and ε2 are defined to be cut-equivalent, denoted by ε1 ∼c ε2,
if the spanning subgraph induced by the edge set {e ∈ E(G) | ε1(e) 	= ε2(e)} is a
directed cut with respect to ε1 or ε2. Let C be a cycle of G with a given cyclic
orientation εC . Given an orientation ε of G, let
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[ε, εC ](e) =
⎧
⎨

⎩

1, if e ∈ E(C) and ε(e) = εC (e),
−1, if e ∈ E(C) and ε(e) 	= εC (e),
0, if e 	∈ E(C),

where E(C) is the edge set of C . We need the following equivalent statement of the
orthogonality of the cycle space and the cut space [2, p.53], see also [4, Proposi-
tion 6.2].

Lemma 2. Given a non-empty subset U ⊆ E(G) of a digraph (G, ε), then U is a
directed cut if and only if for any directed cycle (C, εC ),

∑

e∈U∩E(C)

[ε, εC ](e) = 0.

Proposition 2. (1) The cut-equivalence relation ∼c is indeed an equivalence relation
on O(G), and it also induces an equivalence relation on AO(G).

(2) Two orientations ε1 and ε2 belong to the same cocycle reversing classes if and only
if ε1 ∼c ε2.

Proof. (1) Obviously, the relation ∼c satisfies reflexivity and symmetry. Suppose
that ε1 ∼c ε2 and ε2 ∼c ε3. Next we are to prove that ε1 ∼c ε3. We may assume that
ε1 	= ε3. Let

E(εi 	= ε j ) = {e ∈ E(G) | εi (e) 	= ε j (e)}, for i, j = 1, 2, 3.

For any directed cycle (C, εC ), by Lemma 2, we have
∑

e∈E(ε1 	=ε3)∩E(C)

[ε1, εC ](e)

=
∑

e∈E(ε1=ε2 	=ε3)∩E(C)

[ε1, εC ](e) +
∑

e∈E(ε1 	=ε2=ε3)∩E(C)

[ε1, εC ](e)

=
⎛

⎝
∑

e∈E(ε2 	=ε3)∩E(C)

[ε2, εC ](e) −
∑

e∈E(ε1 	=ε2 	=ε3)∩E(C)

[ε2, εC ](e)
⎞

⎠

−
⎛

⎝
∑

e∈E(ε1 	=ε2)∩E(C)

[ε2, εC ](e) −
∑

e∈E(ε1 	=ε2 	=ε3)∩E(C)

[ε2, εC ](e)
⎞

⎠

=
∑

e∈E(ε2 	=ε3)∩E(C)

[ε2, εC ](e) −
∑

e∈E(ε1 	=ε2)∩E(C)

[ε2, εC ](e)

= 0.

From Lemma 2 it follows that the spanning subgraph induced by the edge set {e ∈
E(G) | ε1(e) 	= ε3(e)} is a directed cut with respect to ε1 or ε3. This completes
the proof of the desired transitivity of the relation ∼c. Moreover, it is clear that if
ε1 ∼c ε2 and ε1 ∈ AO(G), then ε2 is also acyclic. Therefore, the relation ∼c is also
an equivalence relation on AO(G).
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Fig. 2. Equivalence relations among three orientations.

(2) The proof is quite similar to that of (2) of Proposition 1; the details are
omitted. �

It has been proven that both the Eulerian-equivalence relation and the cut-equiv-
alence relation are equivalence relations, see [5,4], and the proofs are given here to
make this paper self-contained. Gioan [9] also introduced the notion of cycle-cocy-
cle reversing classes of orientations by reversing both cycles and cocycles. Note that
for any given orientation ε of G the digraph (G, ε) is naturally decomposed into a
cyclic part, which is the union of all directed cycles of G, and an acyclic part, which
is the union of all directed cocycles of G. By the above two propositions, it is easy to
verify that for O(G) the notion of cycle-cocycle reversing classes coincides with that
of Eulerian-cut equivalence classes defined below. We call two orientations ε1 and ε2
Eulerian-cut-equivalent, denoted by ε1 ∼ec ε2, if the spanning subgraph induced
by the edge set {e ∈ E(G) | ε1(e) 	= ε2(e)} is a disjoint union of an oriented Eulerian
graph and a direct cut with respect to ε1 or ε2. According to the above propositions,
the relation ∼ec is indeed an equivalence relation on O(G).

By definitions, the two orientations (B-1) and (B-2) in Fig. 2 are cut-equivalent,
(B-2) and (B-3) are Eulerian-equivalent, while (B-1) and (B-3) are Eulerian-cut-
equivalent.

3. Eulerian-equivalence Classes

The main goal of this section is to give a bijective proof of the following theorem
on the enumeration of Eulerian-equivalence classes of totally cyclic orientations.

Theorem 1. [9] For any graph G, let α(G) denote the number of Eulerian-equivalence
classes of BO(G). Then

α(G) = TG(0, 1). (2)

Our proof is based on a bijection between Eulerian-equivalence classes of BO(G)

and spanning trees without internally active edges, which is an algorithmic bijection
similar to the modified Blass-Sagan algorithm [8].

Fix an orientation ε◦ of G (not necessarily totally cyclic or acyclic), which we
will refer to as the normal orientation. Fix the total order imposed on the edge set
E(G) which is used to define the internal activity and the external activity. We say
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that an orientation ε is reduced if for each edge e ∈ E(G) either ε◦(e) = ε(e) or
there exists no directed cycle containing e with all other edges on the cycle smaller
than e in (G, ε).

Given a partial orientation ε of G, let G ′ be the graph obtained from G by con-
tracting all undirected edges with respect to ε. Let ε′ denote the orientation of G ′
inherited from ε. We say that ε is reduced if ε′ is reduced with respect to the inher-
ited normal orientation and the inherited order. Given any two partial orientations
ε1 and ε2 of G such that the set of undirected edges of ε1 coincides with that of
ε2, we say that they are Eulerian-equivalent if the two inherited orientations of the
contraction G ′ are Eulerian-equivalent.

Lemma 3. With the normal orientation ε◦ and the total order on edges fixed as above,
there exists one and only one reduced orientation in each Eulerian-equivalence class
of BO(G).

Proof. We first show that for a given Eulerian-equivalence class there exists at least
one reduced orientation. Start with an arbitrary totally cyclic orientation in the
class, say ε0. If ε0 is reduced, then we are done. Otherwise, find the largest edge,
say em , which doesn’t satisfy the reduced property. It means that ε◦(em) 	= ε0(em)

and there exists a directed cycle containing em such that all other edges on the cycle
are smaller than em . By reversing the orientation of this cycle, we obtain another
Eulerian-equivalent orientation ε1 such that all edges larger than or equal to em

satisfy the reduced property. Iterating the above process, we will get one orientation
equivalent to ε0, with all its edges satisfying the reduced property.

Now we show that the reduced orientation is unique in the Eulerian-equivalence
class. Suppose there are two reduced equivalent orientations ε′ and ε′′. Consider the
spanning subgraph H induced by the edge set {e ∈ E(G) | ε′(e) 	= ε′′(e)}. If H is
not empty, then the equivalence of ε′ and ε′′ implies that H is a disjoint union of
directed cycles with respect to ε′ or ε′′. Taking a directed cycle of H with respect to
ε′, let em be the largest edge on this cycle. Without loss of generality, we may assume
that ε′(em) = ε◦(em). Therefore, ε′′(em) 	= ε◦(em), contradicting the assumption
that ε′′ is reduced. Thus the proof is complete. �

As shown above, for each Eulerian-equivalence class we can obtain the reduced
orientation from any orientation ε in the class with the iterated process. For conve-
nience we call it the normalization of ε.

In the following we will construct an algorithm which maps each reduced totally
cyclic orientation to a spanning tree without internally active edges. Due to the
above lemma, we obtain the desired bijection. As before, we impose a total order
on the edge set {e1, e2, . . . , e|E |} such that ei < e j iff i < j . Then each directed
edge will be sequentially examined and will be either deleted or unoriented using
the following algorithm:

(S1) Input a graph (G, ε), where ε is a partial orientation of G.
(S2) Let (G ′, ε′) be the contraction of (G, ε) with all undirected edges contracted.

Reset ε′ to be the reduced representation in the corresponding equivalence
class.
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(S3) Consider the largest edge e of G ′. If e is a loop or a cycle flippable edge with
respect to ε′, then we delete e from (G ′, ε′). Otherwise, we unorient e in G ′.
Reset G to be the graph recovered from G ′ by uncontracting all undirected
edges. Reset ε to be the orientation of G obtained from ε′, i.e., for every
directed edge e′ we have ε′(e′) = ε(e′). If G contains at least one directed
edge with respect to ε, then go to Step (S2). Otherwise, go to Step (S4).

(S4) Output the graph G.

For an example of how the above algorithm works, see Fig. 3, where the symbol
I denotes the unorientation, the symbol I I denotes the deletion, and the symbol
I I I denotes the normalization.

To show that this algorithm does produce a bijection, we shall first introduce a
sequence of sets, O0,O1, . . . ,Oq (where q = |E(G)|), such that O0 is the set of all
reduced totally cyclic orientations of G, and Oq is the set of all spanning trees of
G without internally active edges. We will show that the k-th step of the algorithm

Fig. 3. An example of the algorithm.
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gives a bijection, fk : Ok−1 → Ok , where Ok is defined as the set of all partial
orientations ε of spanning subgraphs of G satisfying the following conditions:

(a) Each of the first k largest edges of G is either present in ε (as an undirected
edge) or absent from ε, but each of the remaining q − k edges is present in ε

in exactly one orientation, and there does not exist a cycle only consisting of
undirected edges.

(b) The orientation obtained from ε by contracting all undirected edges is totally
cyclic.

(c) The partial orientation ε is reduced.
(d) For each undirected edge e in the subgraph, if e is a bridge which separates

the subgraph into two components C1 and C2, there exists at least one edge
strictly smaller than e in the edge cut EG [C1, C2], the set of edges between the
two components.

From the above conditions, we find that O0 is indeed the set of all reduced rep-
resentations of the totally cyclic orientations of G, and Oq is indeed the set of all
spanning trees without internally active edges.

Lemma 4. fk maps Ok−1 into Ok .

Proof. It suffices to verify that properties (a)–(d) listed above are still satisfied after
the algorithm is applied at the k-th stage.

(a′) If the k-th largest edge e is cycle flippable then the algorithm will delete it;
otherwise, the algorithm will unorient it. Therefore, it will not create a new
cycle consisting of only undirected edges.

(b′) Clearly, to unorient an edge or to delete a cycle flippable edge will not destroy
the totally cyclic property.

(c′) This is ensured by Step (S2) of the algorithm.
(d′) Suppose that there exists some undirected edge e as a bridge in the subgraph

such that e is the smallest edge in the edge cut EG[C1, C2]. Then, in the process
of the algorithm all edges of EG[C1, C2] except e must have been deleted at
previous steps. Consider the second smallest edge e0 of EG [C1, C2]. Clearly,
e0 must not be cycle flippable when it was examined, and the algorithm will
unorient it. This is a contradiction.

Thus we complete the proof. �
To prove that fk is bijective, we first give the following two lemmas:

Lemma 5. Given an orientation ε ∈ Ok−1, let e be the largest directed edge of the under-
lying graph G. Let ε′ be the orientation of G − e inherited from ε. If ε is reduced and e
is cycle flippable relative to ε, then ε′ is also reduced. Moreover, fk(ε(G)) = ε′(G −e).

Proof. Suppose that ε′ is not reduced. There must exist one edge e′ which is smaller
than e and doesn’t satisfy the reduced property in G − e. Clearly, e′ also doesn’t sat-
isfy the reduced property for the orientation ε in G, which contradicts the hypothesis
that ε is reduced. �



A Bijection for Eulerian-equivalence Classes 529

Lemma 6. Given any two distinct reduced totally cyclic orientations ε1 and ε2 of G,
suppose that the largest directed edge e is neither cycle flippable with respect to ε1 nor
with respect to ε2. Let ε′

1 (resp. ε′
2) be the orientation of G/e inherited from ε1 (resp.

ε2). Then ε′
1 and ε′

2 are not Eulerian-equivalent.

Proof. Since ε1, ε2 are reduced and e is the largest edge in G, we must have ε1(e) =
ε2(e). Suppose that ε′

1 and ε′
2 are Eulerian-equivalent, then the edge set {e′ ∈

E(G/e) | ε′
1(e

′) 	= ε′
2(e

′)} can be written as a disjoint union ∪i Ci , where each Ci is a
directed cycle in G/e with respect to ε′

1 or ε′
2. The set {e′ ∈ E(G/e) | ε′

1(e
′) 	= ε′

2(e
′)}

can not be empty, otherwise we will have ε1 ∼e ε2, contradicting the hypothesis that
they are distinct reduced orientations. If for each i the edges in G corresponding to
the edges of Ci also form a cycle, then we also have ε1 ∼e ε2. Otherwise, suppose
for some i the edges in G corresponding to the edges of Ci do not form a cycle, but
together with the edge e they will form a cycle. If Ci and e form a directed cycle
with respect to ε1 (resp. ε2), then e will be cycle flippable with respect to ε2 (resp.
ε1) since ε2 (resp. ε1) is totally cyclic, again a contradiction. �

Theorem 2. fk is bijective.

Proof. First we proceed to prove that fk is one-to-one. Suppose ε1 and ε2 are two
distinct elements of Ok−1 which are both mapped to ε ∈ Ok by the algorithm. Since
the algorithm only affects the k-th largest edge, we note that in both ε1 and ε2, the
cases are the same for the first k − 1 largest edges of G. We note that ε can not be
obtained from ε1 and ε2 by deletion. Otherwise, ε1 and ε2 would be the same due
to Lemma 5. Thus we only need to consider the case where ε was obtained from
ε1 and ε2 by unorienting the k-th largest edge and applying the normalization. By
Lemma 6, this is also impossible.

Then we prove that fk maps Ok−1 onto Ok . For any ε ∈ Ok such that the k-th
largest edge e of G is absent in the underlying spanning subgraph, we just add the
edge e in the subgraph and normally orient it. Denote the orientation of this new
digraph by ε′. Since ε is totally cyclic and the underlying graph is connected, ε′ is still
totally cyclic. Notice that e is the largest directed edge with respect to ε′. Therefore,
ε′ is also reduced and the edge e is cycle flippable. It means that ε′ ∈ Ok−1, and the
k-th stage of the algorithm will map ε′ to ε.

For any ε ∈ Ok such that the k-th largest edge e = (u, v) of G is undirected in the
underlying spanning subgraph, we construct an orientation ε′ ∈ Ok−1 as follows.

(1) Choose a direction of e such that the new orientation is totally cyclic. Note
that such an orientation always exists.

(2) Normalize the new orientation. If the edge e is not cycle flippable, then return
the orientation; otherwise, go to (3).

(3) Reorient the edge e oppositely, then go to (2).

Suppose that e is directed from u to v for the normal orientation. Note that
for the orientation in Step (1) the outdegree of u is finite in the graph obtained by
contracting all undirected edges, and each time when we reorient the edge e in Step
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(3) the outdegree of u will be decreased by one. Therefore, the above procedure will
terminate at some stage. Let ε′ be the returned orientation. Clearly, e is not cycle
flippable with respect to ε′, and ε′ ∈ Ok−1. The k-th stage of the algorithm will map
ε′ to ε. This completes the proof. �
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